| =
g‘]x SIGGRAPH2011

VAN(oUVER

Filtering Approaches for
Real-Time Anti-Aliasing

http://www.iryoku.com/aacourse/

IGGRAPH2011

VAN(oUVER

Filtering Approaches for Real-Time Anti-Aliasing

Jimenez's MLAA &
SMAA: Subpixel Morphological Anti-Aliasing

Jorge Jimenez
Universidad de Zaragoza

jorge@iryoku.com

Hi,

I’'m Jorge Jimenez, from the Universidad de Zaragoza, Spain.

Up to now, Alex has been talking about his original, CPU-based MLAA.

My presentation is about how we transformed this technique into a very efficient GPU
shader, and the improvements we introduced.

’/’ SIGGRAPH2011 E
J VAN(oUVER -

Jorge Fernando
Jimenez Masia Echevarria Navarro
Universidad de Universidad de Universidad de Lionhead Studios Universidad de
Zaragoza Zaragoza Zaragoza Zaragoza

Practical Morphological Anti-Aliasing
In GPU Pro 2: Advanced Rendering Techniques

But, first of all, here you have all the team members that made this technique possible.

>
@4 SIGGRAPH2011

VAN(oUVER

= i
=

Practical Morphological Anti-Aliasing SMAA: Subpixel Morphological Anti-

In GPU Pro 2: Advanced Rendering Aliasing
Techniques Technical Report

It has been published in GPU Pro 2, and there has been some improvements ever since.

So, I'll be giving you a sneak preview [click] of our latest-latest technique, which we have
just published as a tech report (but more on that later).

Qs s
Key Features

High Quality
* 16X gradients (or more!)
% Noise proof — Temporally Stable

% Sharpness preservation

* Fast

* 0.28ms@720p (GeForce GTX 470)

% Beats MSAA by about a 1180% (GeForce 9800 GTX+)
* LowMemory Footprint

%* 2xX the backbuffer size
* Portable

* Customizable Edge Detection Practical Morphological Anti-Aliasing

In GPU Pro 2: Advanced Rendering Techniques

During the development of our technique we had to decide on several tradeoffs.

Qs s
Key Features

* HighQuality
* 16X gradients (or more!)
% Noise proof — Temporally Stable

% Sharpness preservation

Practical Morphological Anti-Aliasing
In GPU Pro 2: Advanced Rendering Techniques

First of all, we put our maximum emphasis, on achieving the highest quality possible:

- We obtain gradients in the silhouette of objects that usually surpass those produced
by MSAA 16x.

- In our latest version, we are more temporally stable, with a much better management
of noise.

- We are really consevative with the image, as we only touch were it’s really needed,
which translates to a better sharpness preservation.

Qs s
Key Features

* Fast
* 0.28ms@720p (GeForce GTX 470)
% Beats MSAA by about a 1180% (GeForce 9800 GTX+)

Practical Morphological Anti-Aliasing
In GPU Pro 2: Advanced Rendering Techniques

Second to high quality, we tried to achieve the best performance possible.

We are quite fast on medium to high-end range of GPUs, running in 0.28 on a GeForce
GTX 470 and beating MSAA by a factor of twelve in our older test machine.

’?‘
Qg s
Key Features

* LowMemory Footprint
% 2x the backbuffer size
* Portable

Practical Morphological Anti-Aliasing
In GPU Pro 2: Advanced Rendering Techniques

Also, we have a low memory footprint and we are easily portable.

Qs s
Key Features

* Customizable Edge Detection Practical Morphological Anti-Aliasing

In GPU Pro 2: Advanced Rendering Techniques

The edge detection step can be customized to use color, depth, instance ids, normals,
primitive ids, or any combination of them, as Alexander already mentioned.

This allows to select the best method for a particular scenario.

We believe the method used in Killzone 3, described later on by Tobias, could be one of
the best edge detection approaches.

&

SIGGRAPH2011
VAN(oUVER

Key Ideas
» Translate MLAA to use simple textures

» Use pre-computed textures:
% Avoid dynamic branching

% Avoid calculating areas on the fly

» Leverage bilinear filtering to the limit
 Share calculations between pixels (pixels share edges!)

» Mask operations by using the stencil buffer

| would like to begin with the key, high-level ideas of our technique.

For this, let’s forget about this boring slide and begin with what the original CPU based
approach does, and how we replace each component into a more GPU-friendly form.

10

o

SIGGRAPH2011
VAN(oUVER

MLAA High-Level Algorithm

So, say we want to antialias this image.

11

| =
f‘}; SIGGRAPH2011

VANCUVER MLAA High-LQVEI Algorithm

For this we have to figure out the blue line, which represents the revectorization of this
pixel pattern.

12

o

SIGGRAPH2011

VANCUVER MLAA High-LQVEI Algorithm

Using this revectorization, we will fill the areas under the line using the opposite color at
each pixel.

So, in the left we fill with black, and on the right, we fill with white.

This is then translated to...

13

o

SIGGRAPH2011

VANCoUVER MLAA High—LeVEI Algorithm

...gray levels, which approximate the real shape.

14

| =
f‘}; SIGGRAPH2011

VAN(oUVER

MLAA High-Level Algorithm

But, ok, let’s rewind.

The first step is detecting where the edges are, which are the lines marked on green.

15

o

SIGGRAPH2011
VAN(oUVER

MLAA High-Level Algorithm

And now, we have to search for the line ends to the left and to the right.

16

o

SIGGRAPH2011
VAN(oUVER

MLAA High-Level Algorithm

And, obtain the crossing edges at each side of the line.

17

&

SIGGRAPH2011

VANCUVER MLAA High-LQVEI Algorithm

With the distances and crossing edges at hand, we have enough information for
calculating the areas under the revectorized line.

Easy, isn’t it?

18

o

SIGGRAPH2011
VAN(oUVER

Problems

 Searching for ends is slow

» Fetching for crossing edges is costly

Crossing Edges

But the beauty doesn’t come without problems:

Fetching edges for the searches and crossing edges is slow, as it requires lots of memory
bandwidth.

19

&

SIGGRAPH2011
VAN(oUVER

Problems

* Revectorization is branchy:
2% =16 cases!

 Area calculation is not cheap

And even with the crossing edges at hand, the revectorization is not trivial given the
high number of possible patterns.

20

o

SIGGRAPH2011
VAN(oUVER

Problems

* Upto4lines per pixel!

Furthermore, we have to repeat these calculations up to four times per pixel, one per
boundary, which introduces a very huge performance penalty.

So, how can we, solve these problems, without reducing the quality of MLAA?

21

’? IGGRAPH2011 F
% SViI'G\I'(O?JVERO .
Solutions

» Searching for line ends is slow

 Fetching for crossing edges is costly

% Solution: introduce bilinear filtering to post

processing antialiasing

This allows to fetch multiple values in a single access!

To improve the searches for line ends and the fetching of crossing edges, which is the

most expensive component of MLAA, we introduce bilinear filtering to accelerate post
processing antialiasing.

This allows to fetch multiple values in a single access.

&

SIGGRAPH2011
VAN(oUVER

Solutions

 (Calculating the revectorization is not easy nor fast
» Accurate area calculation is not cheap

% Solution: avoid branchy code by using a
precomputed texture

distances

: area
crossing edges

Then, for easing the revectorization and area calculation we built a texture which takes
as input the distances and crossing edges and, outputs the area under the line.

This transforms the whole branchy code to discern between the sixteen cases, and the
area calculation into a single texture access.

23

&

SIGGRAPH2011 F‘

e Solutions
* Upto4 lines can pass through a pixel

% Solution: stupid observation; pixels share edges,

don’t repeat calculations!

While it’s true that four lines can pass through a pixel, they are shared with the
neighbors.

So, instead of searching for the four lines, we search just for the top and left lines,

Then, we calculate the corresponding areas, and store them into a temporal buffer.

This allows to share this information with the neighbors, at the cost of introducing
another pass.

24

&

SIGGRAPH2011 F‘
VAN(oUVER

New Problem!
* We now require three full-screen passes

% Solution: use the stencil buffer!

But, now we got a new problem: we require three fullscreen passes.

However, the solution is easy:

[click]

Mask pixels that need procesing in the first pass using the stencil buffer.

25

& e
J& S{aﬁgﬁnzon -
- Workflow

Original Image Edgestexture Blending weights Antialiased
texture Image

Ok, so we finished with the high level idea, now, let’s dive into the details of our
implementation.

Here you have the big picture of our technique.

It consists on three passes.

26

& e
J& S{aﬁgﬁnzon -
- Workflow

Original Image Edgestexture Blending weights Antialiased
texture Image

1ST

In the first pass, we perform edge detection, obtaining the edges texture.

27

e £
J S{aﬁgﬁnzon =
- Workflow

Original Image Edgestexture Blending weights Antialiased
texture Image

1ST =N

In the second pass, we process each edge, calculating the revectorizations and obtaining
the corresponding areas.

28

@ SIGGRAPH2011 E

e Workflow

Original Image Edgestexture Blending weights Antialiased
texture Image

1ST =N B~

In the third and final pass, we blend each pixel with its four-neighborhood, using the
areas from the second pass.

I’'m going to skip the edge detection step and go straight to the second one, which has a
more interesting implementation.

29

-

IGGRAPH2011
VAN(oUVER

Edge Detection 15t Pass

Color:
—Y'=02126-R'+0.7152-G'+0.0722- B’

Depth: cheaper and more clean edges, but cannot
work at all object scales

Instance ids/depth + nomials: the best if you have
this information available =

s

So, let’s begin with the first pass.

Edge detection is a critical step for the quality of the final image.

Each undetected edge will remain aliased in the final image, so detecting all perceptible
edges is crucial.

Robustness in this step is also desirable, given that good edge detection enhances
temporal stability.

There are multiple options; which one is the best will depend largely on the particular
scenario.

30

| =
%‘}& SIGGRAPH2011

VAN(oUVER

Edge Detection 15t Pass

e Color:
—Y'=02126-R'+0.7152-G'+0.0722- B’

1ST

s

Color can be considered the most universal and easier solution, as it’s always available.

Working with color additionally provides seamless handling of shading aliasing, which
may improve quality in some scenarios.

On the downside, it may introduce a slightly blur on text appearing on models, and
other high-frequency features.

%5 SIGGRAPH2011 F
T ,
e Edge Detection 15t Pass

* Depth: cheaper and more clean edges, but cannot
work at all object scales

1ST

s

Depth, normals or object IDs can also be used,

as they are better estimators for geometrical edges,

allowing to maintain the maximum image sharpness.

Using only depth is tricky as it’s really hard to manage all object scales properly, as Pete
will show later on.

32

| =
%‘}& SIGGRAPH2011

VAN(oUVER

Edge Detection 15t Pass

 Instance ids/depth + normals: clean, sharp but
more expensive 1sT

s

Combining depth and instance ids with normals leads to very good results in general,

As they produce really clean and complete edges,

Managing to preserve most of the image sharpness.

However the edge detection pass is more expensive given the extra work required.

Sometimes they also introduce artifacts that color doesn’t, but explaining them are out
of the scope of this talk.

’?‘
¢ 7 SIGGRAPH2011
s VAN(oUVER

Edge Detection 15t Pass

» (Color version:

float4 ColorEdgeDetectionPS (float4 position : SV _POSITION,

float3 weights

/**

* Luma calcul

float2 texcoord : TEXCOCRDO) : SV TARGET ({
= float3(0.2126,0.7152, 0.0722);

ation requires gamma-corrected colors, and thus 'colorTex' should

* be a non-sRGB texture.

=/

float L = dot(
float Lleft =
float Ltop =
float Lright =
float Lbottom

floatd delta =
floatd edges =

if (dot (edges,
discard;

return edges;

colorTex.Samplelevel (PointSampler, texcoord, 0).rgb, weights);

dot (colorTex.SampleLlevel (PointSampler, texcoord, 0, -int2(1, 0)).rgb, weights):;
dot (colorTex.Samplelevel (PointSampler, texcoord, 0, —-int2(0, 1)) .rgb, weights):;
dot (colorTex.SampleLevel (PointSampler, texcoord, 0, int2(1, 0)).rgb, weights);
= dot (colorTex.Samplelevel (PointSampler, texcoord, 0, int2(0, 1)).rgb, weights);

abs (L.xxxx — floatd (Lleft, Ltop, Lright, Ibottom));
step (threshold.xxxx, delta);

1.0) == 0.0)
1sSsT

s

Here you can see the simplest form of edge detection, using color input data.

It uses five [cli

ck] memory accesses and a few arithmetic operations.

In platforms where Gather4 is available...

34

’?‘
¢ 7 SIGGRAPH2011
s VAN(oUVER

Edge Detection 15t Pass

» (Color version:

float4 ColorEdgeDetectionPS (float4 position : SV _POSITION,
float2 texcoord : TEXCOCRDO) : SV TARGET ({

/**

* Luma calculation requires gamma—-corrected colors, and thus 'colorTex' should

* be a non-sRGB texture.

=/
float4d topleft = lumaTex.Gather (LinearSampler, texcoord + PIXEL SIZE * float2(-0.5, -0.5), 0);
floatd4 bottomRight = lumaTex.Gather (LinearSampler, texcoord + PIXEL STZE * float2 (0.5, 0.5), 0):
float L = toplLeft.g;
float Lleft = topleft.r; float Ltop = topleft.b;
float Lright = bottomRight.b; float Ibottom = bottomRight.r;

floatd delta = abs(L.xxxx - float4d (Lleft, Ltop, Lright, Lbottom));
floatd edges = step(threshold.xxxx, delta);

if (dot(edges, 1.0) == 0.0)
discard; =T

return edges; E
}

...we can reduce the number of accesses to 3 and remove all the dot products, given the
lumas are precomputed

35

< -
Blending Weights Calculation 2"9 Pass

* |t consists on three parts:

3
* Searching for distances d,_ A
andd, . to the end of
current line |
% Fetching crossing edges e,
ande,., ’
% Calculating the coverage a 0 1 2 3 4
of this pixel, usingdand e SND

So, in this second pass we want to calculate the areas under the revectorized line.

In this pass, we have to search for the ends of the line, to fetch the crossing edges and to
use this information to calculate the coverage area of this pixel.

36

o

SIGGRAPH2011
VAN(oUVER

Searching for Distances

* Done by exploiting bilinear filtering:

[J [J [] [] [] [] [] []
. Q .
60 50 -40 30 20 -10 00 10

Searching line ends is a memory-intensive task.

So, to improve the bandwidth usage, we leverage the fact that bilinear filtering is free on
most platforms.

In this image you have the edge marked on blue, with the colors of the dots
representing the values of the edge buffer.

So, starting from here [click], we are going to jump two pixels at time, just between
them...

37

o

SIGGRAPH2011
VAN(oUVER

Searching for Distances

* Done by exploiting bilinear filtering:

[J [J [] [] [] [] []
' ®
60 50 40 30 20 1.0 00

This rombus represent the first fetch.

Bilinear filtering returns one, so there is an edge in both pixels.

38

| =
f‘}; SIGGRAPH2011

VAN(oUVER

Searching for Distances

* Done by exploiting bilinear filtering:

[[J ® ® ® [] [] []
: ? :
-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0

The same here...

%,"
J SlGGROAF’ngOH . .
e Searching for Distances

* Done by exploiting bilinear filtering:

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0

But, in this fetch we obtain 0.5, which means that one of the edges is not active, and
thus the search has finished.

By using bilinear filtering in this way, we are able to accelerate searches by a factor of
two, allowing to reach really long distance searches without performance drop outs.

40

’,"
¢ 7 SIGGRAPH2011
s VAN(oUVER

Searching for Distances

e Search example code:

float SearchXLeft (float2 texcoord) {
texcoord —= float2(1.5, 0.0) * PIXEL STZE;
float e = 0.0;

// We offset by 0.5 to sample between edgels, thus fetching two in a row
for (int i = 0; i < maxSearchSteps; i++) {
e = edgesTex.Samplelevel (LinearSampler, texcoord, 0).g;

// We compare with 0.9 to prevent bilinear access precision problems
[flatten] if (e < 0.9) break;
texcoord -= float2(2.0, 0.0) * PIXEL SIZE;

}

// When we exit the loop without founding the end, we want to return
// =2 * maxSearchSteps
return max(-2.0 * i - 2.0 * e, -2.0 * maxSearchSteps);

=ND

Here, you have the simple code that handles the searches to the left.

You can see how we jump two pixels at time [click].

And, how we stop when the fetch returns something else than one [click]

41

’,"
4 /4 SIGGRAPH2011
J VAN(oUVER

Fetching crossing edges

Once we have the distances to the ends of the line, we use them to obtain the crossing
edges.

A naive approach for fetching the crossing edges would imply querying the four edges.

42

| =
%‘}4 SIGGRAPH2011

VAN(oUVER

Fetching crossing edges

» Again, done by exploiting bilinear filtering

0.5 0.5

Instead, a more efficient approach is to use bilinear filtering for fetching both edges at a
time, similar to the distance search.

But, now there is a little problem.

When the return value is 0.5, we are dealing with this case [click]... or this other one
[click]?

43

| =
%‘}4 SIGGRAPH2011

VAN(oUVER

Fetching crossing edges

% Solution: offset the coordinates!

: :_|: :

0.0 0.25 0.75 1.0
=ND

The solution is to offset the query by 0.25 allowing to distinguish them, as the returned
value is different in each case.

44

l &
4 /4 SIGGRAPH2011
J VAN(ouVER

Calculating the coverage

* We use a pre-computed texture to avoid:

% Dynamic branching
% Expensive area calculations

0 4 1 5
bl — }‘
8 12

— | = T_IT_I

A key contribution in the coverage calculation is that, instead of handling sixteen
different patterns, we precompute them in a 4D texture [click], which avoids branching

code.

45

<

SIGGRAPH2011
VAN(oUVER

Calculating the coverage

Accessing this texture is as follows.

First, the pattern type, or block, is selected...

46

<

SIGGRAPH2011
VAN(oUVER

Eri ght

4 - MaxDistance -

Calculating the coverage

i\
€ left

...by using the crossing edges information.

47

<

SIGGRAPH2011
VAN(oUVER

Calculating the coverage

Eri ght

4 - MaxDistance -

Then, the proper area is selected by using the distances to the end of the line.

48

&

SIGGRAPH2011
VAN(oUVER

Calculating the coverage

You may be thinking why the precomputed area texture has two channels:

The answer is rather easy, having two channels allows to disambiguate the blend
direction.

Red values means the bottom pixel blends with the top one.

While the green values just the opposite.

49

<

SIGGRAPH2011
VAN(oUVER

Area Texture Advatanges

» Symetrical handling of patterns

e Asymetric revectorization — patterns fine tuning

= H-
7_1 IF_I

Using a precomputed area has multiple advantages,

Including the fact that all patterns are handled in the same way: a simple texture access.

On the other hand, the texture itself can be customized, allowing to fine tune certain

patterns.

50

| =
{‘}; SIGGRAPH2011

VAN(oUVER

0 4 1 5
I , I
I |
8 12 9 13
| | |
I I

2 6 3

We avoid filtering these patterns [click], as their revectorization usually introduces
artifacts.

We also customized the revectorization of others [click], triting them as simple Z
patterns.

This fine tunings help to maintain the image as pristine as possible,

while still delivering high quality antialiasing where needed.

51

&

Blending Weights Calculation 2"9 Pass

* Shader code (l):

float4 BlendingWeightCalculationPS (float4 position : SV POSITICN,
float2 texcoord : TEXCOORDO) : SV_TARGET {

floatd4 weights = 0.0;
float2 e = edgesTex.Samplelevel (PointSampler, texcoord, 0).rg;

[branch]
if (e.qg) { // Edge at north

// Search distances to the left and to the right:
float2 d = float?2(SearchXLeft (texcoord), SearchXRight (texcoord));

// Now fetch the crossing edges. Instead of sampling between edgels, we
// sample at -0.25, to be able to discern what value has each edgel:
float4 coords = mad(floatd(d.x, -0.25, d.y + 1.0, -0.25),

PIXEL SIZE.xyxy, texcoord.xyxy);
float el = edgesTex.Samplelevel (LinearSampler, coords.xy, 0).r;
float e2 = edgesTex.Samplelevel (LinearSampler, cocrds.zw, 0).r;

// Ok, we know how this pattern locks like, now it is time for getting 2ND

// the actual area:
weights.rg = Area(abs(d), el, e2); -
}

Here you have the code for the whole pass.

We first search for line ends [click].

Then fetch the crossing edges [click].

And, finally obtain the coverage area [click].

52

&

Blending Weights Calculation 2"9 Pass

* Shader code (ll):

[branch]
if (e.r) { // Edge at west

// Search distances to the top and to the bottom:
float2 d = floatZ (Search¥Up (texcoord), SearchYDown (texcoord)) ;

// Now fetch the crossing edges (yet again):
float4 coords = mad(float4 (-0.25, d.x, -0.25, d.y + 1.0),
PIXEL SIZE.xyxy, texcoord.xyxy):;
float el = edgesTex.Samplelevel (LinearSampler, coords.xy, 0).g;
float e2 = edgesTex.Samplelevel (LinearSampler, coords.zw, 0).g;

// Get the area for this direction:
weights.ba = Area{abs(d), el, e2);
}

return weights;

} =ND

This shows the code for the vertical case, which is quite similar, as you can see.

53

=
g‘q‘ SIGGRAPH2011

VAN(oUVER Nei gthI‘h ood Blending 3rd PaSS

* We blend with the neighborhood using the areas

calculated in previous pass

Croy = (1 -a)-cda,+a-copp

SR

Finally, we want to blend pixel on edges using the areas calculated on the previous pass.

For example, for the case of the pixel c_old, we got the area a from the edge on the
bottom.

The blending required [click] is similar to 1D bilinear filtering.

54

o

SIGGRAPH2011

VAN(oUVER Nei gthI‘h OOd Blending 3rd PaSS

* We leverage bilinear filtering (yet again):

Cold

@)
cnm=(1—a)-co,d+a-copp -\z

opp

So, we again leverage bilinear filtering, using it to implement the blending equation.

55

=
4 ~ 2 SIGGRAPH2011

"\ AN(oUVER Nei gthI’h ood Blending 3rd Pgass

* Shader code (l):

float4 NeighborhoodBlendingPS (flocat4 position : SV_POSITICN,
flocat2 texcoord : TEXCOORDO) : SV _TARGET {
// Fetch the blending weights for current pixel:
floatd topleft = blendTex.Samplelevel (PointSampler, texcoord, 0);
float bottom = blendTex.Samplelevel (PointSampler, texcoord, 0, int2(0, 1)).g;
float right = blendTex.Samplelevel (PointSampler, texcoord, 0, int2 (1, 0)).a:;
float4 a = floatd (toplLeft.r, bottom, topLeft.b, right);

// Up to 4 lines can be crossing a pixel (one in each edge). So, we perform
// a weighted average, where the weight of each line is 'a' cubed, which

// favors blending and works well in practice.

floatd w=a * a * a;

Here [click], we can see how we fetch the areas of the four possible lines.

56

(4

Neighborhood Blending 3 Pass

Shader code (ll):

// There is some blending weight with a wvalue greater than 0.07?
float sum = dot(w, 1.0);
[branch]
if (sum > 0.0) {
float4 o = a * PIXEL SIZE.yyxx;
float4 color = 0.0;

// BAdd the contributions of the possible 4 lines that can cross this
// pixel:

color = mad(colorTex.SampleLevel (LinearSampler, texcoord + float2(0.0, -o.r), 0), w.r, color);
color = mad(colorTex.SampleLevel (LinearSampler, texcoord + float2(0.0, o.g), 0), w.g, color);
color = mad (colorTex.Samplelevel (LinearSampler, texcoord + floatZ(-o.k, 0.0), 0), w.b, color);
color = mad(colorTex.SampleLevel (LinearSampler, texcoord + floatZ(o.a, 0.0), 0), w.a, color);

// Normalize the resulting color and we are finished!
return color / sum;

} else {
return colorTex.SampleLevel (LinearSampler, texcoord, 0);

And here [click], we blend with the neighbors, averaging the result of the four possible
lines that can cross the pixel.

57

Qpgeane . .
SRGB and linear blending

 Blending should be done in linear space

(Gamma Blend)

For the most accurate results, this blending should be done in linear space.

[back and forth] You can see that the differences between gamma and linear are subtle...
yet apparent.

Using SRGB buffers and DirectX 10 will ensure blending is done in linear space.

Qpgeane . .
SRGB and linear blending

e Blending should be done in linear space.

(Linear Blend)

For the most accurate results, this blending should be done in linear space.

[back and forth] You can see that the differences between gamma and linear are subtle...
yet apparent.

Using SRGB buffers and DirectX 10 will ensure blending is done in linear space.

| encourage you to visit our page for looking at the results, but nevertheless, I’'m going to
show some of them.

Here you have the first one.

60

Where you can appreciate the accuracy of color edge detection.

61

62

And here, an interesting image from Unigine.

As you can see [back and forth], some texture detail is lost when using color edge
detection.

63

And here, an interesting image from Unigine.

As you can see [back and forth], some texture detail is lost when using color edge
detection.

64

65

On the other hand, when using depth based edge detection...

The texture detail is perfectly preserved.

66

On the other hand, when using depth based edge detection...

The texture detail is perfectly preserved.

67

However, some zones with little depth deltas will not be antialiased.

How to combine the best of both worlds, will be covered by Tobias later on.

68

| =
f‘}; SIGGRAPH2011

VAN(oUVER

Performance

0.28ms@720 on a GeForce GTX 470
0.37ms@720 if Gather4 is not used

Assasin's Creed 0,368 0,10
Bioshock 0,352 0,12
Crysis 0,348 0,12
Dead Space 0312 0,12
Devil May Cry 4 0,256 0,05
GTAIV 0,234 0,01
ModemWarfare 2 0,248 0,02
NFS Shift 0,26 0,04
Split / Second 0,276 0,04
S.T.A.LK.E.R. 0,29 0,04
Grand Average 02944 0,08

Measured with screen captures

So, this is all good, it’s really fast, it works fine [click], and this technique is already been
used in several games.

However we have much better news, we have just made public a technical report
about...

&

SIGGRAPH2011
VAN(oUVER

SMAA
Subpixel Morphological Antialiasing

B OEE
=B O
~ i OIS

What we called Subpixel Morphological Antialiasing.

70

D SMAA:
Subpixel Morphological Antialiasing

0 s
|
Temporal AA MSAA
Great Great Great
subpixel gradrients! subpixel
features! features!

Some months ago we were thinking:

Morphological Antialiasing is good [click]

Temporal Antialiasing is also good thing [click]

And multisampling is very good [click]

So, why not combine them into a single technique?

>
@4 SIGGRAPH2011

VAN(oUVER

SMAA:

Subpixel Morphological Antialiasing

%

Temporal AA
Good
subpixel
features!

Great
gradients!

MSAA
Great
subpixel
features!

But, well... it’s not as easy as it sounds.

72

&

SIGGRAPH2011
VAN(oUVER

SMAA: =
Subpixel Morphological Antialiasing

Post-Resolve
MLAA

If you try to apply morphological antialiasing after resolving, it won’t be able to generate
proper gradients, given the edges are now smoother and harder to detect.

73

o

o SMAA:
Subpixel Morphological Antialiasing

Pre-Resolve
MLAA

And if you try to apply it before resolving, it’s an improvement over MLAA but it is still

not that good, as there is too much blur.

74

’?‘ SIGGRAPH2011
& VAN(oUVER SMAA:
Subpixel Morphological Antialiasing

@
@
.\
. h
\

| won’t enter in details, but by offseting the revectorizations to match the subpixel
positions, we managed to obtain much better results.

75

o

SIGGRAPH2011 G S SRR SO S)
VAN(OUVER MLAA MLAA MLAA FXAA L DLAA SRAA SMAAI: SMAAS2: SSAA 16z)
Ng Nm Wn Ny Wn Ny Ny Ny Ny i

g\\g\._\\\\

ﬂi"—"aﬂa!i!’i!:!‘i!a
EEEEEEE

P

Accueate
Searches

Accueso

Sharp Geom. _ Diagoual

Subgixel
Feamwes {3) Festwes PamemDet. Gradients

Subpixe]
Features (cj Features (b}

Subpiee]

}
;

o
3
:
§
i

We encourage you to download the technical report for a very exhaustive details.

76

’," SIGGRAPH2011
& VAN(oUVER SMAA:
Subpixel Morphological Antialiasing
 Better fallbacks: everything is processed

Y% Zones with low contrast are antialiased by multi/supersampling

SMAA S2x SSAA 16x

Being composed of three components, when one of them fails, the other two serve as
fallback.

In this example, we can see how low contrast zones, usually ignored by morpholohical
approches are handled by our spatial multisampling component.

77

D SMAA:
Subpixel Morphological Antialiasing

 Improves pattern handling

% Diagonals

SSAA 16x

We also achieve better handling of diagonals...

78

%:4 SIGGRAPH2011 F
¥ \AN(ouVer SMAA: s

Subpixel Morphological Antialiasing

» Improves pattern handling
% Sharp geometric features detection (good for

text!)
S ——— r —a——_
| W - 7 g | | :.—7 .

(Insane: 256 patterns!)
Input SMAA 1x Extended Area Texture

and improved sharp geometric features, which allows to avoid the general roundness
introduced by MLAA.

It also enables better text handling, by the cost of just two additional memory accesses.

79

Qpgeane SMAA:
Subpixel Morphological Antialiasing

e Accurate searches

Our simplified search scheme, while very fast, sometimes introduced artifacts in form of
dithering.

This is, due to the fact that, as we sample in the middle between pixels [click], the last
step is ambiguous.

80

5
Ly SMAA:

Subpixel Morphological Antialiasing

e Accurate searches

So by sampling at different offsets in the x and y directions [click], we stop at the
appropriate moment without incurring into any additional overhead.

81

=
O SMAA: =

Subpixel Morphological Antialiasing

» Take neighborhood lumas into account

Another feature we introduced is what we call local contrast awareness.

A big drawback of MLAA approaches is that they usually consider edges binary: they are
either on or off.

Sometimes this can be an issue, because the actual strength of an edge is important.

For example, in this image we can see there are gradients in the silhouette of this
object...

82

o

SIGGRAPH2011
VAN(oUVER

SMAA:
Subpixel Morphological Antialiasing

» Take neighborhood lumas into account

...which confuse MLAA’s search scheme [click], as it will see crossing edges that will

make it stop earlier than desired.

83

Qs SMAA: =
Subpixel Morphological Antialiasing

» Take neighborhood lumas into account

However, perceptually we ignore these crossing edges because the contrast with the
white background is much, much, higher.

So, what we did is to mimic our visual system and ignore edges which have low contrast
with respect to the neighbors.

| =
@4 SIGGRAPH2011

VAN(oUVER

What's under the hood

* HighQuality
* 16X gradients (or more!)
% Noise proof — Temporally Stable

% Sharpness preservation

* What's under the hood

% The fast and accurate distance searches
% The local contrast awareness
% Specific patterns tuning

% Calculating the four possible lines that can cross a pixel, and smartly average them

We believe the key component of our technique is the heuristics we are using for
determining which is the best pattern revectorization for a pixel, and to stick with it over
time.

85

’?‘ SIGGRAPH2011
2 Rt SMAA:
Subpixel Morphological Antialiasing

* Modular
* SMAA 1x improved pattern handling
* SMAAT2x 1x + temporal supersampling
* SMAA S2x 1x + spatial multisampling
* SMAA 4x 1x + 2x temporal supersampling + 2x spatial multisampling

* Performance of SMAA 4x (on a GTX 580)
* 1.06 ms @1080p

* 0.5 ms@720p both not taking into account 2x render overhead

The technique is modular, so you can turn on features selectively, easily adapting it to
the available budget.

In fact, most of the improvements just add a few lines to our current MLAA shader.

So, upgrading to SMAA is going to be a rather easy task.

=
Orin SMAA: =

Subpixel Morphological Antialiasing

* Modular
* SMAA 1x improved pattern handling
* SMAAT2x 1x + temporal supersampling
* SMAA S2x 1x + spatial multisampling
% SMAA 4x 1x + 2x temporal supersampling + 2x spatial multisampling

* Performance of SMAA 4x (on a GTX 580)
* 1.06 ms @1080p

* 0.5 ms@720p both not taking into account 2x render overhead

And finally, the performance of the highest quality profile, runs in 1 millisecond for a
720p buffer.

87

Visit us!

Visit our project pages:
http://Mwwi.iryokt.com/mlaa
http://mwwi.iryoku.com/Sinaa

SMAA technlcal paper: ’ ?
el- Morphologlcal Antlallasmg

Github page: jl-"' e . . @
https://github.com/iryoku/smaa/ : Ay g B

Thanks to:
% Stephen Hill
% Jean-Francois St-Amour
% Naty Hoffman
% Natasha Tatarchuk
% Johan Andersson

Sorry that we didn’t give a detailed description of SMAA, but you have the technical
report online, and | will be posting about each feature on my blog in the next weeks =]

My colleague Pete from Double Fine, will continue with the presentation of his Hybrid
MLAA approach.

Thank you for your attention, and do not forget to visit us :-)

88

